Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons.
نویسندگان
چکیده
Large diameter cells in rat deep cerebellar nuclei (DCN) can be distinguished according to the generation of a transient or weak rebound burst and the expression of T-type Ca(2+) channel isoforms. We studied the ionic basis for the distinction in burst phenotypes in rat DCN cells in vitro. Following a hyperpolarization, transient burst cells generated a high-frequency spike burst of < or = 450 Hz, whereas weak burst cells generated a lower-frequency increase (<140 Hz). Both cell types expressed a low voltage-activated (LVA) Ca(2+) current near threshold for rebound burst discharge (-50 mV) that was consistent with T-type Ca(2+) current, but on average 7 times more current was recorded in transient burst cells. The number and frequency of spikes in rebound bursts was tightly correlated with the peak Ca(2+) current at -50 mV, showing a direct relationship between the availability of LVA Ca(2+) current and spike output. Transient burst cells exhibited a larger spike depolarizing afterpotential that was insensitive to blockers of voltage-gated Na(+) or Ca(2+) channels. In comparison, weak burst cells exhibited larger afterhyperpolarizations (AHPs) that reduced cell excitability and rebound spike output. The sensitivity of AHPs to Ca(2+) channel blockers suggests that both LVA and high voltage-activated (HVA) Ca(2+) channels trigger AHPs in weak burst compared with only HVA Ca(2+) channels in transient burst cells. The two burst phenotypes in rat DCN cells thus derive in part from a difference in the availability of LVA Ca(2+) current following a hyperpolarization and a differential activation of AHPs that establish distinct levels of membrane excitability.
منابع مشابه
Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons.
T-type calcium channels are thought to transform neuronal output to a burst mode by generating low voltage-activated (LVA) calcium currents and rebound burst discharge. In this study we assess the expression pattern of the three different T-type channel isoforms (Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3) in cerebellar neurons and focus on their potential role in generating LVA spikes and rebound discha...
متن کاملReliability of triggering postinhibitory rebound bursts in deep cerebellar neurons.
Deep cerebellar nuclear (DCN) neurons exhibit distinct phenotypes of rebound discharge following current-evoked membrane hyperpolarizations that arise from specific Ca(V)3 T-type Ca(2+) channel isoforms and Ca(2+)-activated K(+) channels. The probability of evoking rebound bursts following a brief train of GABAergic inhibitory synaptic input from cerebellar Purkinje cells was recently questione...
متن کاملEstablishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro
Purkinje cells of the cerebellar cortex and neurons in the deep cerebellar nuclei (DCN) were among the first central neurons to be studied extensively through the use of in vitro preparations. Yet, the degree to which the patterns of action potential (“spike”) output recorded in these cells in vitro match those recorded in vivo has been a matter of debate and uncertainty. We have identified rel...
متن کاملRegulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum.
Current-clamp recordings were made from the deep cerebellar nuclei (DCN) of 12- to 15-day-old rats to understand the factors that mediate intrinsic spontaneous firing patterns. All of the cells recorded were spontaneously active with spiking patterns ranging continuously from regular spiking to spontaneous bursting with the former predominating. A robust rebound depolarization (RD) leading to a...
متن کاملKv1 K+ channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons.
Purkinje cells (PCs) generate the sole output of the cerebellar cortex and govern the timing of action potential discharge from neurons of the deep cerebellar nuclei (DCN). Here, we examine how voltage-gated Kv1 K+ channels shape intrinsically generated and synaptically controlled behaviors of PCs and address how the timing of DCN neuron output is modulated by manipulating PC Kv1 channels. Kv1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 100 5 شماره
صفحات -
تاریخ انتشار 2008